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Distributions can be very complex!

Beams with Space-Charge
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Motivation

• Beams near the source:

– Are high in space-charge

– Have distributions that are in not in 

equilibrium

– Can be born with halo particles
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Approach

• We need to develop an accurate phase space 

diagnostic

• Tomography is a good candidate, but to date, 

has been used only for beams with little space 

charge

• This study demonstrates the use of tomography 

for beams with intense space charge
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Motivation Example

• Initial Conditions?

• Input in Simulations?
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• Tomography is the technique of reconstructing 

an image from its projections 

Abel (1826) Radon (1917)

Computed Tomography (CAT Scan)

http://www.sv.vt.edu/

http://universe-review.ca



Tomography Algorithm

Fourier Slice Theorem

Fourier transform of a parallel projection is equal to 
a slice of the two-dimensional Fourier transform of 
the original object.

Kak and Slaney, Principles of Computerized Tomographic Imaging (1988)
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Tomography Advantages-Disadvantages

• Pros

– No a priori assumption about the distribution

– Compact/ no need additional hardware

• Cons

– In rings only applicable to first turn

– Sensitive to screen linearity and camera quality



• Single particle:

Quadrupole-Scan Tomography

Is this equation

familiar? 
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• Quadrupoles rotate the phase space distribution. 

Quadrupole Lens Screen



Solenoidal Tomography

• Particle equation

• Where 

• If            , 

• Case is similar to quadrupoles

0pθ = 0SCF =
''r rκ= −

• With SC: Very complicated! 

Stratakis et al., Physics of Plasmas (Letter)14, 120703 (2007)

Solenoidal Lens Screen
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Beam Tomography with space charge

''

SCx x Fκ= − +• Single particle equation:

• Minimize the  assumptions about the beam distribution

• Approximate space charge force as linear

• Validate through simulation (to be checked later)



Beam Tomography with space charge

• Assume linear forces:

• Find X, Y by solving envelope equations:
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SCx x Fκ= − +• Single particle equation:

Stratakis et al. Physical Review ST - AB 9, 112801 (2006)

2
2X x= < >

2
2Y y= < >

3

0
2

qI
K

mvπε
=



Tomography Simulation/ Validation

Simplified 
configuration

Photo Capture

Phase space 
recovery

Q4 Q2Q3 BeamQ1

• Reconstructed phase space by Tomography will 

be compared to that generated directly by 

WARP



X’

Hollow velocity distribution

• Reconstructed phase space by Tomography will be 

compared to that generated directly by WARP.
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Tomography Simulation/ Validation

• Reconstructed phase space by Tomography is 

compared to that generated directly by WARP.
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Tomography Experimental Configuration

Q4 Q3 Q2CCD

Beam

Screen

Q1

Stratakis et al. PAC 2007

• Screens

– Gd2O2S:Tb (P43), 1.5 ms decay time

– ZnO:Ga (E36), 2.4 ns decay time

• Cameras
– IMPERX-1M48 (integrated)

– PIMAX2 ICCD (gated)

• Lens
– 60mm Micro Nikkor F/2.8 AF



Computer Control System

Magnet Control Computer

Tomography PC

CCD Camera

RS-232

Magnet

Power supplies

Stratakis et al. PAC 2007
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Experimental Validation of Tomography
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D. Stratakis, I. Haber, and S. Bernal, unpublished  data
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Three Experiments with Intense Beams

• Experiment 1:

“Uniform” beam evolution (19mA, χ=0.85).

• Experiment 2:

Nonuniform beam evolution (28mA, χ=0.9). 

19 mA

28 mA

• Experiment 3:    

Solenoidal Tomography/ Time Resolved Tomography
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Multibeamlet Experiment

Beam Parameters

e- beam (E=10 keV, I=28 mA, K=4 10-4)

a = 0.6 cm

λp =  1.3 m

λβo=  1.51 m

λβ = 2.75 m
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• Beamlets are well separated in phase space

Multibeamlet Experiment Simulation
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Multibeamlet Experiment

• Free energy conversion:

/ 1.1f iε ε =
M. Reiser, PRL (1988)
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Tomography with Solenoids
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• Experiment reveals the presence of rings of 

particles 
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Stratakis et al., Physics of Plasmas (Letters)14, 120703 (2007)
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Tomography with Solenoids

Stratakis et al., Physics of Plasmas (Letters)14, 120703 (2007)
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Time Resolved Tomography (in progress)
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Conclusions

• Extended Tomography to beams with 

Space Charge

• Simulation validated accuracy of technique

• Experimental measurements reveal evolution of 

beam halo and multi-beamlet merger

• Employed solenoids for tomography
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